8 Modular Forms of Higher Level

8.1 Modular Forms on $\Gamma_1(N)$

Fix integers $k \geq 0$ and $N \geq 1$. Recall that $\Gamma_1(N)$ is the subgroup of elements of $\text{SL}_2(\mathbb{Z})$ that are of the form $\left(\begin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix} \right)$ when reduced modulo N.

Definition 8.1.1 (Modular Forms). The space of modular forms of level N and weight k is

$$M_k(\Gamma_1(N)) = \{ f : f(\gamma \tau) = (c\tau + d)^k f(\tau) \text{ all } \gamma \in \Gamma_1(N) \},$$

where the f are assumed holomorphic on $\mathfrak{h} \cup \{ \text{cusps} \}$ (see below for the precise meaning of this). The space of cusp forms of level N and weight k is the subspace $S_k(\Gamma_1(N))$ of $M_k(\Gamma_1(N))$ of modular forms that vanish at all cusps.

Suppose $f \in M_k(\Gamma_1(N))$. The group $\Gamma_1(N)$ contains the matrix $\left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right)$, so

$$f(z + 1) = f(z),$$

and for f to be holomorphic at infinity means that f has a Fourier expansion

$$f = \sum_{n=0}^{\infty} a_n q^n.$$

To explain what it means for f to be holomorphic at all cusps, we introduce some additional notation. For $\alpha \in \text{GL}_2^+(\mathbb{R})$ and $f : \mathfrak{h} \to \mathbb{C}$ define another function $f_{[\alpha]}$ as follows:

$$f_{[\alpha]}(z) = \det(\alpha)^{k-1} (cz + d)^{-k} f(\alpha z).$$

It is straightforward to check that $f_{[\alpha \alpha']}_k = (f_{[\alpha]})_k [\alpha']$. Note that we do not have to make sense of $f_{[\alpha]}(\infty)$, since we only assume that f is a function on \mathfrak{h} and not \mathfrak{h}^*.
Using our new notation, the transformation condition required for \(f : h \to C \) to be a modular form for \(\Gamma_1(N) \) of weight \(k \) is simply that \(f \) be fixed by the \([\]_k\)-action of \(\Gamma_1(N) \). Suppose \(x \in \mathbb{P}^1(\mathbb{Q}) \) is a cusp, and choose \(\alpha \in \text{SL}_2(\mathbb{Z}) \) such that \(\alpha(\infty) = x \). Then \(g = f_{[\alpha]} \) is fixed by the \([\]_k\) action of \(\alpha^{-1} \Gamma_1(N) \alpha \).

Lemma 8.1.2. Let \(\alpha \in \text{SL}_2(\mathbb{Z}) \). Then there exists a positive integer \(h \) such that \((\begin{smallmatrix} 1 & h \\ 0 & 1 \end{smallmatrix}) \) is fixed by the \([\]_k\) action of \(\alpha^{-1} \Gamma_1(N) \alpha \).

Proof. This follows from the general fact that the set of congruence subgroups of \(\text{SL}_2(\mathbb{Z}) \) is closed under conjugation by elements \(\alpha \in \text{SL}_2(\mathbb{Z}) \), and every congruence subgroup contains an element of the form \((\begin{smallmatrix} 1 & h \\ 0 & 1 \end{smallmatrix})\). If \(G \) is a congruence subgroup, then \(\Gamma(N) \) for some \(N \), and \(\alpha^{-1} \Gamma(N) \alpha = \Gamma(N) \), since \(\Gamma(N) \) is normal, so \(\Gamma(N) \subset \alpha^{-1} G \alpha \).

Letting \(h \) be as in the lemma, we have \(g(z + h) = g(z) \). Then the condition that \(f \) be holomorphic at the cusp \(x \) is that \(g(z) = \sum_{n \geq 0} b_n/h q^{1/h} \) on the upper half plane. We say that \(f \) vanishes at \(x \) if \(b_n/h = 0 \), so a cusp form is a form that vanishes at every cusp.

8.2 The Diamond bracket and Hecke operators

In this section we consider the spaces of modular forms \(S_k(\Gamma_1(N), \varepsilon) \), for Dirichlet characters \(\varepsilon \mod N \), and explicitly describe the action of the Hecke operators on these spaces.

8.2.1 Diamond bracket operators

The group \(\Gamma_1(N) \) is a normal subgroup of \(\Gamma_0(N) \), and the quotient \(\Gamma_0(N)/\Gamma_1(N) \) is isomorphic to \((\mathbb{Z}/N\mathbb{Z})^* \). From this structure we obtain an action of \((\mathbb{Z}/N\mathbb{Z})^* \) on \(S_k(\Gamma_1(N)) \), and use it to decompose \(S_k(\Gamma_1(N)) \) as a direct sum of more manageable chunks \(S_k(\Gamma_1(N), \varepsilon) \).

Definition 8.2.1 (Dirichlet character). A *Dirichlet character* \(\varepsilon \) modulo \(N \) is a homomorphism

\[
\varepsilon : (\mathbb{Z}/N\mathbb{Z})^* \to C^*.
\]

We extend \(\varepsilon \) to a map \(\varepsilon : \mathbb{Z} \to C \) by setting \(\varepsilon(m) = 0 \) if \((m, N) \neq 1 \) and \(\varepsilon(m) = \varepsilon(m \mod N) \) otherwise. If \(\varepsilon : C \) is a Dirichlet character, the *conductor* of \(\varepsilon \) is the smallest positive integer \(\varepsilon \) that \(\varepsilon \) arises from a homomorphism \((\mathbb{Z}/N\mathbb{Z})^* \to C^* \).

Remarks 8.2.2.

1. If \(\varepsilon \) is a Dirichlet character modulo \(N \) and \(M \) is a multiple of \(N \) then \(\varepsilon \) induces a Dirichlet character mod \(M \). If \(M \) is a divisor of \(N \) then \(\varepsilon \) is induced by a Dirichlet character modulo \(M \) if and only if \(M \) divides the conductor of \(\varepsilon \).
2. The set of Dirichlet characters forms a group, which is non-canonically isomorphic to $(\mathbb{Z}/N\mathbb{Z})^*$ (it is the dual of this group).

3. The mod N Dirichlet characters all take values in $\mathbb{Q}(e^{2\pi i/e})$ where e is the exponent of $(\mathbb{Z}/N\mathbb{Z})^*$. When N is an odd prime power, the group $(\mathbb{Z}/N\mathbb{Z})^*$ is cyclic, so $e = \varphi(N)$. This double-φ can sometimes cause confusion.

4. There are many ways to represent Dirichlet characters with a computer. I think the best way is also the simplest—fix generators for $(\mathbb{Z}/N\mathbb{Z})^*$ in any way you like and represent ε by the images of each of these generators. Assume for the moment that N is odd. To make the representation more “canonical”, reduce to the prime power case by writing $(\mathbb{Z}/N\mathbb{Z})^*$ as a product of cyclic groups corresponding to prime divisors of N. A “canonical” generator for $(\mathbb{Z}/p^r\mathbb{Z})^*$ is then the smallest positive integer s such that $s \mod p^r$ generates $(\mathbb{Z}/p^r\mathbb{Z})^*$. Store the character that sends s to $e^{2\pi i m/\varphi(p^r)}$ by storing the integer n. For general N, store the list of integers n_p, one p for each prime divisor of N (unless $p = 2$, in which case you store two integers n_2 and n_2', where $n_2 \in \{0, 1\}$).

Definition 8.2.3. Let $\varepsilon \in (\mathbb{Z}/N\mathbb{Z})^*$ and $f \in S_k(\Gamma_1(N))$. The map $\text{SL}_2(\mathbb{Z}) \to \text{SL}_2(\mathbb{Z}/N\mathbb{Z})$ is surjective, so there exists a matrix $\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_0(N)$ such that $d \equiv \overline{d} \pmod{N}$. The *diamond bracket* d operator is then

$$f(\tau)(\langle d \rangle) = f(\gamma \tau)(c\tau + d)^{-k}.$$

The definition of $\langle d \rangle$ does not depend on the choice of lift matrix $\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$, since any two lifts differ by an element of $\Gamma(N)$ and f is fixed by $\Gamma(N)$ since it is fixed by $\Gamma_1(N)$.

For each Dirichlet character $\varepsilon \mod N$ let

$$S_k(\Gamma_1(N), \varepsilon) = \{ f : f|\langle d \rangle = \varepsilon(d)f \text{ all } d \in (\mathbb{Z}/N\mathbb{Z})^* \} = \{ f : f|_{[\gamma]} = \varepsilon(d_\gamma)f \text{ all } \gamma \in \Gamma_0(N) \},$$

where d_γ is the lower-left entry of γ.

When $f \in S_k(\Gamma_1(N), \varepsilon)$, we say that f has Dirichlet character ε. In the literature, sometimes f is said to be of “nebentypus” ε.

Lemma 8.2.4. The operator $\langle d \rangle$ on the finite-dimensional vector space $S_k(\Gamma_1(N))$ is diagonalizable.

Proof. There exists N such that $I = \langle 1 \rangle = \langle d^n \rangle = \langle d \rangle^n$, so the characteristic polynomial of $\langle d \rangle$ divides the square-free polynomial $X^n - 1$. \square

Note that $S_k(\Gamma_1(N), \varepsilon)$ is the $\varepsilon(d)$ eigenspace of $\langle d \rangle$. Thus we have a direct sum decomposition

$$S_k(\Gamma_1(N)) = \bigoplus_{\varepsilon \in (\mathbb{Z}/N\mathbb{Z})^*} S_k(\Gamma_1(N), \varepsilon).$$

We have $\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right) \in \Gamma_0(N)$, so if $f \in S_k(\Gamma_1(N), \varepsilon)$, then $f(\tau)(-1)^{-k} = \varepsilon(-1)f(\tau)$.

Thus $S_k(\Gamma_1(N), \varepsilon) = 0$, unless $\varepsilon(-1) = (-1)^k$, so about half of the direct summands $S_k(\Gamma_1(N), \varepsilon)$ vanish.
8.2.2 Hecke Operators on q-expansions

Suppose

$$f = \sum_{n=1}^{\infty} a_n q^n \in S_k(\Gamma_1(N), \varepsilon),$$

and let p be a prime. Then

$$f|_{T_p} = \begin{cases}
\sum_{n=1}^{\infty} a_{np} q^n + p^{k-1} \varepsilon(p) \sum_{n=1}^{\infty} a_n q^{pn}, & p \nmid N \\
\sum_{n=1}^{\infty} a_{np} q^n + 0, & p \mid N.
\end{cases}$$

Note that $\varepsilon(p) = 0$ when $p \mid N$, so the second part of the formula is redundant.

When $p \mid N$, T_p is often denoted U_p in the literature, but we will not do so here. Also, the ring T generated by the Hecke operators is commutative, so it is harmless, though potentially confusing, to write $T_p(f)$ instead of $f|_{T_p}$.

We record the relations

$$T_m T_n = T_{mn}, \quad (m, n) = 1,$$

$$T_{p^k} = \begin{cases}
(T_p)^k, & p \mid N \\
T_{p^{k-1}} T_p - \varepsilon(p) p^{k-1} T_{p^{k-2}}, & p \nmid N.
\end{cases}$$

WARNING: When $p \mid N$, the operator T_p on $S_k(\Gamma_1(N), \varepsilon)$ need not be diagonalizable.

8.3 Old and new subspaces

Let M and N be positive integers such that $M \mid N$ and let $t \mid \frac{N}{M}$. If $f(\tau) \in S_k(\Gamma_1(M))$ then $f(t\tau) \in S_k(\Gamma_1(N))$. We thus have maps

$$S_k(\Gamma_1(M)) \to S_k(\Gamma_1(N))$$

for each divisor $t \mid \frac{N}{M}$. Combining these gives a map

$$\varphi_M : \bigoplus_{t \mid \frac{N}{M}} S_k(\Gamma_1(M)) \to S_k(\Gamma_1(N)).$$

Definition 8.3.1 (Old Subspace). The *old subspace* of $S_k(\Gamma_1(N))$ is the subspace generated by the images of the φ_M for all $M \mid N$ with $M \neq N$.

Definition 8.3.2 (New Subspace). The *new subspace* of $S_k(\Gamma_1(N))$ is the complement of the old subspace with respect to the Petersson inner product.

\footnote{Since I haven’t introduced the Petersson inner product yet, note that the new subspace of $S_k(\Gamma_1(N))$ is the largest subspace of $S_k(\Gamma_1(N))$ that is stable under the Hecke operators and has trivial intersection with the old subspace of $S_k(\Gamma_1(N))$.}

\footnote{Remove from book.}
8.3 Old and new subspaces

Definition 8.3.3 (Newform). A *newform* is an element f of the new subspace of $S_k(\Gamma_1(N))$ that is an eigenvector for every Hecke operator, which is normalized so that the coefficient of q in f is 1.

If $f = \sum a_n q^n$ is a newform then the coefficients a_n are algebraic integers, which have deep arithmetic significance. For example, when f has weight 2, there is an associated abelian variety A_f over \mathbb{Q} of dimension $[\mathbb{Q}(a_1, a_2, \ldots) : \mathbb{Q}]$ such that $\prod L(f^\sigma, s) = L(A_f, s)$, where the product is over the $\text{Gal}(\mathbb{Q}/\mathbb{Q})$-conjugates of f. The abelian variety A_f was constructed by Shimura as follows. Let $J_1(N)$ be the Jacobian of the modular curve $X_1(N)$. As we will see tomorrow, the ring T of Hecke operators acts naturally on $J_1(N)$. Let I_f be the kernel of the homomorphism $T \to \mathbb{Z}[a_1, a_2, \ldots]$ that sends T_n to a_n. Then

$$A_f = J_1(N)/I_f J_1(N).$$

In the converse direction, it is a deep theorem of Breuil, Conrad, Diamond, Taylor, and Wiles that if E is any elliptic curve over \mathbb{Q}, then E is isogenous to A_f for some f of level equal to the conductor N of E.

When f has weight greater than 2, Scholl constructs\(^2\), in an analogous way, a Grothendieck motive \(^=\text{compatible collection of cohomology groups}\(^3\)) M_f attached to f.

\(^2\)add reference
\(^3\)remove